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MODEL OF SELF-ORGANIZATION OF AN ENSEMBLE

OF CRACKS RADIATING SOUND

UDC 550.343V. V. Kuznetsov

A model of self-organization of cracks arising in a rock specimen (granite) compressed by a press is
proposed. The model is based on the assumption of acoustic wave interaction between the cracks. To
construct the model of self-organization of cracks, solutions of the Fokker–Planck equation are used.
The experimentally observed spontaneous increase in the activity of acoustic emission, spatial and
temporal clusterization, and formation of a fractal structure in rock specimens under constant and
slowly varying loads are explained.

Self-organized systems have recently gained much attention in physics of nonlinear processes and phenomena
[1–3] and in geophysics, particularly, in studying the earthquake physics [4–6]. Most of the studies are based on the
Barridge–Knopoff seismicity model and the Gutenberg–Richter law.

Despite long-standing efforts of researchers, the nature of an earthquake is still not understood. One line
of investigations performed in this field is the laboratory simulation of the processes that occur in rock specimens
compressed by means of a press. Interesting results were obtained which, to the author’s knowledge, have not yet
been explained. It was found that, after a specimen is subjected to constant pressure within approximately 50 h,
the intensity of acoustic emission (AE) increases substantially, and the velocity of sound and amplitude of sounding
signals change. Upon reaching a maximum, AE decreases almost to the initial level (prior to its increase). At
the same time, the velocity and amplitude of the sounding signals do not revert to the initial level [7]. Similar
results were obtained in [8] where nonstationary acoustic emission was studied. In contrast to [7], the velocity and
amplitude of the sounding signal were not measured in [8]. Zhurkov et al. [8] found that the rate of crack formation
increased spontaneously by a factor of 10 to 15 compared to the background level and then it decreased abruptly.
The authors of [8] did not explain this phenomenon and considered that it was unlikely that the activity of crack
formation increased abruptly in bulk of the loaded specimen. Apparently, this is possible only in a certain region
of the specimen that is special for some reasons. A more detailed analysis of the kinetics of this local failure is
required to explain why foreshocks, aftershocks, and possibly, some earthquake precursors occur.

Lei et al. [9] studied the distribution of AE hypocenters in a granite specimen under increasing three-
dimensional compression. Three stages of deformation were observed. At the first stage, the location of AE
hypocenters is random; at the second stage, they unite into groups (clusters); at the third stage which is prior to
failure, the AE hypocenters form an ensemble (nucleation). In granite specimens (of the INADA type), the AE
hypocenters unite into spatial–temporal fractals, and as the compression of the specimen is increased, which leads
to failure, the dimension of the fractals d decreases from 2.8 at the second stage to 2.0 at the third stage [9]. (In a
granite specimen of the OSHIMA type, self-organization of AE and formation of fractals do not occur.)

To understand the phenomenon of self-organization of acoustically active cracks, it is necessary to answer
the following questions: Why does AE increase spontaneously and why and how are the radiating cracks clustered
into fractals?

The essence of the model of self-organization of cracks is to find a possible mechanism of coherent interaction
between the cracks by means of exchanging the acoustic waves emitted by the cracks. It is known that, when a
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crack is opening, it emits an AE pulse, which carries a certain fraction of energy; diffracting on a microcrack, the
pulse transfers the energy, thus making the microcrack open. The crack grows and emits an acoustic pulse, which
interacts with next crack, etc. In this case, cracks occur in an avalanche-like fashion, and their acoustic pulses are
summed coherently, which amplifies the sound wave [7] and leads to occurrence of fractal structures similar to those
described in [3].

The intensity Iλ of the sound wave emitted by a crack has the form

Iλ =
1
τλ

∫
σλvλ dt,

where σλ is the stress in the wave, vλ is the particle-oscillation velocity in the medium, and τλ is the duration of
the acoustic pulse. The quantity Iλ can also be written in the form adopted in laser physics:

I(x, t) =
1
τλ

(
i
∑

2πhωλ
)

exp (ikλx)bλ.

Here hωλ is the energy of a sound “quantum,” λ is the subscript denoting the mode of acoustic oscillations, kλ is
the wavenumber, bλ is the complex amplitude (dimensionless quantity), and x is the coordinate.

Generally, self-organized structures are described by the Fokker–Planck or Ginzburg–Landau differential
equations. We show that the Fokker–Planck equation can be used in the model proposed. We assume that, as in
laser physics, one can introduce a two-level system in the acoustic model. Microcracks refer to the higher energy
level and open cracks to the lower energy level. Upon opening of a crack, dipole radiation of an energy “quantum”
occurs, and the system passes to the lower level. We introduce the concepts of the population inversion εµ and
dipole moment of the crack αµ. Here we use the dimensionless parameter αµ ∼ l(t)/l [l(t) is the crack growing up to
the length l]. The physical meaning of the dipole moment of a crack is that the crack is considered as a radiator of
the Hertz dipole type whose dipole moment is equal to the product of the current element and the length element.
The inversion is given by εµ = N0−N , where N0 is the number of microcracks and N is the number of open cracks.

According to the Griffith criterion, the rate of crack opening is

u =
dl

dt
= B

(E
ρ

)1/2(
1− ∆s

∆w

)1/2

,

where B is a constant, E is Young’s modulus, ρ is the density of the medium, ∆s is the increase in the surface
energy of the medium due to the crack growth, and ∆w is the energy spent on increasing the crack length.

The crack opening is accompanied by radiation of an acoustic wave characterized by the stress σλ:

σλ = iρωλ2πl3λuλ[(ikλx− 1)/(4πx2)] exp (ikλx) cos θλ.

Here ωλ ∼ 1/τλ is the “frequency” of the radiated wave, τλ = lλ/uλ is the duration of the crack opening, x is the
distance from the radiator (crack) to the observation point, and θλ is the angle of wave propagation relative to the
crack-opening direction. The mode amplitude is bλ = σλ(t)/σλ.

As the wave propagates in a medium with microcracks, it diffracts on one of the microcracks and transfers
a part of the specific power dσ/dt to it, thus making a contribution to its opening and subsequent growth [10]:

dσ

dt
=

2µ0u

(2πx)1/2

( ω
vs

)1/2

sin
θλ
2

exp
[
− i
(
ωt+

π

4

)]
.

Here µ0 is the shear modulus and vs = (µ0/ρ)1/2.
An increase in the crack size is expressed in terms of the change in its dipole moment αµ [1]:

∂αµ
∂t

= (−iω − ζ)αµ +
∑

gµλbλεµ + Γµ(t).

Here ω is the frequency, ζ is the width of the emission line (this quantity has a similar meaning in optics), in
this case, these are close quantities, and Γµ(t) are the fluctuating forces. If εµ = N0 − N > 0, the sound wave is
amplified; if εµ < 0, the wave is absorbed.
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In a stressed medium in a stationary state, the principle of detailed equilibrium (principle of reversibility at
the microlevel)

N0ω0 = Nω, g0ω0 = gω

holds, where ω0 ∼ 1/τ0 [τ0 is the time it takes to “heal” the crack (usually, τ0 � τ)], and g and g0 are constants
of interaction between the wave and the crack (these quantities have a similar meaning in optics). It follows that
ω0 � ω and N0 � N . Thus, the system of cracks is characterized by an inversion εµ whose derivative has the form

∂εµ
∂t

= εµγ + i
∑

gµλαµbλ + Γµ(t),

where γ is a quantity reciprocal to the time of inversion relaxation to equilibrium.
In a stressed medium under a load close to the failure load, the Coulomb–Mohr failure criterion is valid.

According to this criterion, the maximum shear stresses in a specimen act in the planes inclined at an angle β with
respect to the axis of loading, which is close to 45◦. Let β = 45◦ − ϕ/2 (tan ϕ = ν, where ν is the coefficient of
internal friction). The magnitude of the angle β is independent of the strength of the material.

The essence of the adiabatic approach [1] is that the relaxation time of a crack τµ is much smaller than
the life time of a stable mode of the system T : τµ � T (τµ = lµ/u and T = L/vp, where L is the dimension
of the system). Owing to the presence of feedback in the system, mainly those cracks open and grow which are
additionally loaded by the stress ∆σ as a result of diffraction of vibrations of stable modes on these cracks. This,
in turn, leads to an increase in the density of the sound flux in a given direction.

The “quantum” of the sound wave radiated by one crack can be considered as a small parameter: e =
hω = (σ2/E)l3 (σ is the stress in the medium). The acoustic equivalent of the Planck constant has the form
ha = (σ2/(uE))l4. We assume that microcracks of size l0 ≈ 1 µm refer to the upper energy level and open cracks of
size l ≈ 100 µm refer to the lower energy level. We give the upper limit of the size, since the cracks of larger size tend
to grow further and cannot be “healed” after opening. The energy of a microcrack e0 = (σ2/E)l30 is much smaller
than that of an open crack; therefore, it may be ignored in estimating the magnitude of a sound “quantum” formed
upon opening of the crack. If σ = 3 · 107 N/m2 and E = 1010 N/m2, then e = 10−7 J (for a 100-µm crack). We
assume that the rate of crack opening is u ≈ 105 cm/sec, τ = 10−7 sec, and ω = 107 sec−1, then ha = 10−14 J · sec.
(This value is about 20 orders of magnitude greater than the quantum Planck constant h = 6.6 · 10−34 J · sec.)

Crack nucleation is a random process whose probability does not depend on the prehistory of the system.
It is generally agreed that these processes are the Markov (Poisson) processes. The probability that the system
at the moment t + ∆t is in a state with the parameter lying on the interval (q, q + dq) can be determined by the
Smoluchowski integral equation

f(q, t+ ∆t) =
∫
f(q0, t)g(q0, q − q0,∆t) dq,

where g(q0, q − q0,∆t) is the probability that the system passes from the point q0 to the point q in the time ∆t.
After standard transformations of this equation, we obtain the one-dimensional Fokker–Planck equation

∂f(q, t)
∂t

= −∂j
∂q

(
j =

d(γqf)
dq

+
1
2
Q
d2f

dq2

)
.

Here ηq = K is the drift coefficient, Q is the diffusion coefficient, and η is the attenuation rate of the wave packet in
the system. It is known that the solution of this equation corresponds to the presence of a self-organization mecha-
nism in the system, which consists in the interaction of two transfer phenomena: drift and diffusion (percolation).
In the model proposed, both processes occur.

The Fokker–Planck equation yields stationary solutions with the argument independent of time or time-
dependent solutions that do not depend on the coordinate. We consider some known solutions of the equation,
which was first proposed by Fokker and Planck in 1914 to describe the regularities of the distribution of the mean
energy of an electric dipole rotating in a radiation field. It is noteworthy that this equation was originally supposed
to describe physics of the interaction of a particle with radiation (field). It was found later that it can be used to
explain many self-organization phenomena in the fields of physics, chemistry, biology, and sociology [1].

722



In the one-dimensional case, the stationary solution of the Fokker–Planck equation has the form [1]

f(q) = P exp (−2V (q)/Q),

where V (q) = −
∫
K(q) dq is the potential and P is the normalization factor.

Klimontovich [2] obtained another stationary solution of this equation:

f(q) = exp [F0 − (aq + (1/2)bq)/D].

Here F0 is the free energy (analog of fluctuating forces), a is the feedback parameter (a = 0 corresponds to the
beginning of generation), b is the nonlinearity parameter, and D is the Gaussian noise intensity.

For both solutions, the probability density functions have an exponential form, the exponent containing a
“force” parameter, which characterizes the potential, energy, etc. From the physical viewpoint, the solution of the
Fokker–Planck equation can be interpreted as a dependence of the probability of occurrence of a function with a
certain potential on this potential. The higher this potential, the lower the probability of this solution.

Let us consider nonstationary solutions. The one-dimensional solution of the nonstationary (time-dependent)
Fokker–Planck equation has the form

f(q, t) = (πa(t))−1/2 exp[−(q − b/t)2/a(t)],

where a(t) = (Q/α)(1 − exp (−2αt)) + a0 exp (−2αt) and b(t) = b0 exp (−αt). As a → 0 (a0 = 0), the solution
becomes the δ function. This solution implies that a nonstationary solution can occur in a dissipative self-organized
system under certain conditions, for example (for an appropriate interpretation of the parameters that enter the
Fokker–Planck equation), in the form of a solitary wave. As is shown in [1], the solution (in the form of a wave or
a δ function) can be gradually extended and weaken in space and time or, vice versa, compressed and amplified.
This solution explains spontaneous amplification of AE in a rock specimen under constant load.

The linearized Fokker–Planck equation yields

dq

dt
= −αq + η∆q + F.

Here α is an external parameter (its physical meaning is the current density).
In the one-dimensional case, the correlation function 〈q(x′, t′)q(x, t)〉 has the form 〈q(x′, t)q(x, t)〉 =

Q/(αη)1/2 exp (−(α/η)1/2|x′ − x| ) for t′ = t. The coefficient of |x′ − x| in the exponent has a dimension recip-
rocal to the dimension of length. We denote the correlation length by lk = (α/η)−1/2. Obviously, lk →∞ as α→ 0
and, on the contrary, the correlation length decreases as the current density increases.

The parameter d = (α/γ)1/2lk is the dimension of the fractal (cluster). In [9], d varies from 2.8 to 2.2.
According to estimation of the experimental data of [9], lk ≈ 1 cm. The pulse-flux density of acoustic emission is
α ≈ 10–100 cm−2 · sec−1; hence, we obtain η ≈ 1–10 sec−1. The existing experimental data do not allow one to
estimate the parameter η; therefore, it is difficult to say how the above estimate is close to the actual value. (We
recall that the parameter η characterizes the attenuation of an acoustic wave.)

The above-considered solution of the Fokker–Planck equation suggests the possibility of formation of a fractal
structure of radiating cracks. We note that Lei et al. [9] observed the phenomenon of spatial clusterization of cracks,
which “shrinked” from the bulk of the specimen to a certain plane inclined at an angle of approximately 45◦ with
respect to the loading direction.

Self-organization in dissipative (nonconservative) multiparameter structures is quite a common process char-
acterized by an exponential dependence of probability of one event or another on its parameter. For such phenomena
as earthquakes, solar flares, and cosmic rays, energy can play the role of this parameter. This parameter may be
also the frequency of crack formation.

This work was partly supported by the Russian Foundation for Fundamental Research (Grant No. 99-05-
64676).
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